


x 
i ' ,i: NATIONAL ADVISORY COMMIT!FEE FOR AERONAUTICS 
* 1. . #  4 
& 5' -, *; 
k-- 

Notes of the Academy of Sciences, USSR (DOKLADY) v. 69, no. 6 ,  1949 
On the Local Structure of the Temperature Field in a Turbulent Flow, 

by A. M. Yaglom 

Translated by Morris D, Friedman 
Ames Aeronautical Laboratory 

Moffctt Field, Calif. 

The study of the local structure of hydrodynamic fields in 

turbulent flows at high Reynolds numbers was initiated in 1941 by 

A. N. Kolmogoroff (1,2) and by A. M. ObuWroV ( 3 ) ,  by investigating 

I the question of the local structure of the velocity field in an 

I incompressible fluid. As the quantitative characteristics of the 

~ 

structure of this field in the works (l-3), there was used the 
I 

structural function of the velocity field 

r f (1) 
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Dxl (r) {VZ(MI) vi(M)i ,D, (r) = I  Vn(M') - vn(M)j 
where vz(M) and vz(M') are the projections of the velocity vector 

at the points M and M' In the direction M; vn(M) and v,(M') 

are the projections of the velocity vector in a direction perpendicular 

to MM; the line above serves as symbol of the mean value and r is 
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the distance between the points M and M' (basis of this is that 

for large Reynolds numbem for not too great distances r the 

quantities D z z  and Dm essentially are considered as depending 

only on r , see (1)). In the work (1) the behavior of the functions 

Dzz (r) and D, (r) are investigated with the aid of dimension 

theory and simflarity theory in (2), for this end, the equation of 

motion is used and finally, in ( 3 )  is used the equation of energy kr6f<p,f<y (;(;I -'":' 
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belance i n  the spectra of the turbulent stream obtained from the  motion 

equztion by applying Fourier transformations'. 

the  resul ts ,  obtained by these three methods, agree; a t  present these 

r e su l t s  a r e  a l so  confirmed by experiment (7, 8). 

It is  essent ia l  t h a t  

Recently, A. M. Obukhov (9) applied the development i n  (1) t o  a 

general representation of the local  structure of turbulent streama a t  

high Reynolds numbers a l so  and t o  the question of the  loca l  s t ructure  

of the temperature f i e l d s  i n  such streams". 

the s t ructure  function of the  temperature f i e l d  i n  ( 9 )  coincides with 

the method applied i n  (1) t o  study the s t ructure  of the  velocity f i e l d  - 

The method of investigating 

namely - dimension and s imi la r i ty  theories. 

t ha t  the resul ts3 obtained i n  ( 9 )  m y  be ver i f ied and somewhat extended 

with the aid of the equations of hydrodynamics. 

In the present note we show 

c 

As i n  (g), we consider here only the case when there is i n  the 

stream considerablc turbulence of dynamic or igin and the temperature 

pulsations a re  so  small t ha t  t h e i r  influence on the development of 

turbulence m y  be neglected, and we w i l l  not take in to  account radiant 

heat exchange i n  the  medium and the heat connected t o  the dissipation 

lThis l a t t e r  method of investigating the s t ructure  of velocity f ie lds ,  
i n  recent yeare, was repeatedly explained witb no eeeential variat ion 
by a. se r ies  of authors (4-6). 

r -- 

'Application of these same representations t o  the  investigation of 
pressure and acceleration f i e l d s  i n  turbulent flows, see (10, 11). 

3Let us note that these resu l t s  have already found important applications 
i n  the theory of dissipation of l igh t  and radio waves i n  atmosphere 
(12, 13). 
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of mechanical energy of turbulence. For Lese con ons the velocity 

field of the stream will satisfy the usual motion equations related to 

an incompressible fluid (mean velocity, we consider, essentially, much 

less than the speed of sound) and the temperature field by the equation 

(T is the temperature, vl, v2, v3 are the components of the velocity 

vector, x is the coefficient of molecular temperature conduction of 

the medium.) 

equation of diffusion of certain ingredients in a medium if only by 

the concentration of this ingredient is understood and by X 

molecular coefficient of diffusion. 

subsequent reasoning (the same, certainly, as all the reasoning contained 

in ( 9 ) )  is related not only to the temperature field but to the field of 

concentration of any ingredients suspended or dissolved in a turbulent 

flow. 

Let us note that equation (2) coincides exactly with the 

T 

its 

In connection with this, a l l  the 

In the case of large Reynolds numbers turbulent motion m y  be 

considered locally homogeneous and locally isotropic (see (1) ) . 
from the assumption of (2) it follows that 

Here, 

where gl, e;, 6, are components of the vector 3 and 
a2 a2 a2 

A = - , + - +  a g 2  2 a i  
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(see, f o r  example, $he derivation of the analogous equation f o r  the 

velocity field in the book of L. D. Landau and E. M. Lifshitz (14) 

p q e  119). Using now the continuity equation div V a ,  we may express 

the right side of equation ( 3 )  by the structural formula 

4 depending only on r . Here we arrive at the equatlon 

Let us put r = O  in this equation; then the first term goes to zero 

and we obtain the relation 

defining the velocity of the equalizing temperature (or concentration) 

f i e l d  T(M) 

the velocity of the dissipation of kinetic energy. The role of the mean 

energy dissipation f o r  unit time on unit mas8 of fluid E here plays the 

constant 

and completely analogous to the well known equation defining 

N = 3 2 XDIfTT(0) ( 8 )  

Q 
The continuity equation is necessary here in order to be able  to express 

the mean value vz (M)T(M)T(M' ) by the structural function Dim( r). 
Here must be used the theorem that in an incompressible fluid the 
correlation of the isotropic velocity field with any isotropic scaler 
field is always identically equal to zero. 
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The quantity N vas introduced in the reasonings of A. M. Obukhov ( 9 )  *. 

Since the function %T(r) is independent of t (see (I)), then from 

equations ( 5 ) ,  (6) and (7) easily follow6 the relation 

connecting the structural function D Z T T ( r )  and %(r). Integrating 

this relation with respect to r and taking into account the qondition 

= 0, we obtain the equation 
% ( O )  

Dzw(O) = 
dr 

analogous to the equation of A. N. Kolmogoroff ( 2 )  

connecting the structural functions D Z z ( r )  and 

D Z Z Z ( r )  = vz(M') -Vz(M) i3 I 

L J 

Equation (8) shows that for small r in equation (10) it is 

poss lb l e  to neglect the first term compared to the second; for such r 

1 
ZX 

% T ( r )  ;v" - Ns (12) * 

For large r, conversely, we may neglect in (10) the second term which 

describes the molecular temperature conduction (diffusion), so that for 

large r 
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Let us introduce now in the reasoning the dimensionless quantity 

For large Reynolds numbers it is essential to consider that for large r 

the quantity F is constant, that is, independent of r5. But from 

(13) and (14) it quickly follows that 

From this equation it is seen, in particular, that the constant F 

always negative: 

the works (l-3), for the velocity field 

is 

F = -IF1 . Using now the well known “2/3 l a w ” ,  from 

we obtain f o r  sufficiently large r, 

fron; considerations of the l a w  of dimensionality, the “2/3 law“ f o r  the 

temperature field (or concentration): 

as found by A. M. Obukhov (93 I 

- rp 2h 
%(r) = k2 NE r 

w h e r e  

Here the dimensionless constant k2 of Obnkhov ‘we -expre8sddljas hatving 

the simple probability-theoretical sense of the constants S and F. 

*. 

5Generally speekix F may depend on the internal Reynold8 number 

. By assuming, however, that for Re*+ the function 
)c (v2)1/2r  Re = 

F(Re*) tends to the limiting value Fa , we may replace F(Re*) by 
the constant Fw in OUT cese of very large Reynolds numbers of the fld 
for 211 sufficiently large r. 
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